
A Planning Graph Heuristic for Forward-Chaining
Adversarial Planning

Pascal Bercher and Robert Mattmüller 1

Abstract. In contrast to classical planning, in adversarial planning,

the planning agent has to face an adversary trying to prevent him

from reaching his goals. In this paper, we investigate a forward-

chaining approach to adversarial planning based on the AO* algo-

rithm. The exploration of the underlying AND/OR graph is guided

by a heuristic evaluation function, inspired by the relaxed planning

graph heuristic used in the FF planner. Unlike FF, our heuristic uses

an adversarial planning graph with distinct proposition and action

layers for the protagonist and antagonist. First results suggest that

in certain planning domains, our approach yields results competitive

with the state of the art.

1 Introduction

In many planning problems, the environment in which the agent acts

is not static. The exogenous dynamics can be caused by “nature”

or by one or more other agents sharing the same environment. Other

agents can behave neutrally (simply following their own independent

agenda or otherwise acting unpredictably), adversarially, or cooper-

atively with respect to the protagonist’s goals. Here, we focus on

adversarial problems. We assume complete observability, i.e., a plan

will be a mapping from physical states to applicable actions. A usual

approach to conditional (adversarial) planning is planning as model

checking [5], whereas planning as heuristic search [3] tends to yield

best results for static, deterministic problems. Both approaches are

also used in general game playing [7]. Related work includes the dy-

namic programming approach by Hansen and Zilberstein [8], and,

for partially observable problems, heuristic search in the belief space

as implemented in the POND planner by Bryce et al. [4].

2 Adversarial Planning

We consider discrete adversarial planning problems under full ob-

servability with alternating turns. More formally, similar to STRIPS

problems [6], an adversarial planning problem is given by a set of

states S = 2P over a finite set of propositions P , an initial state

I ⊆ P , two finite sets of operators Op and Oa (controlled by the

protagonist p and antagonist a, respectively), and a goal condition

G ⊆ P . Operators have the form o = 〈pre, add, del〉, where pre ⊆ P

is the precondition and add, del ⊆ P are the add and delete lists of

o. An operator o is applicable in a state s ⊆ P iff pre ⊆ s, and if

applied, leads to the successor state s′ = (s\del)∪add. A state s is a

goal state iff G ⊆ s. The players take alternating turns, starting with

1 University of Freiburg, Germany, {bercherp,mattmuel}@informatik.uni-
freiburg.de. This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems” (SFB/TR
14 AVACS). See www.avacs.org for more information.

the protagonist controlling Op. We assume that the player to move

is known in each state. The protagonist tries to reach a goal state in

a finite number of steps, whereas the antagonist tries to prevent him

from doing so. A winning strategy for the protagonist is a function

mapping states in which he is to move to applicable operators, such

that, against each possible strategy of the antagonist, a goal state will

be reached in a finite number of steps.

Such an adversarial planning problem naturally corresponds to the

problem of evaluating an AND/OR graph over the state space. OR

(AND) nodes correspond to states where the protagonist (antagonist)

is to move and arcs correspond to operator applications. The rele-

vant part of a winning strategy for the protagonist corresponds to

an acyclic subgraph containing (a) the initial state, (b) for each con-

tained non-goal AND node all outgoing arcs and their target nodes,

(c) for each contained non-goal OR node exactly one outgoing arc

and its target node, and no further nodes or arcs, such that all leaf

nodes are goal states.

inAL, atCL,
¬full, ¬nop

inAL, inCA,
¬full, ¬nop

inAL, inCA,
¬full, nop

inAL, inCA,
¬full, nop

inAL, inCA,
full, nop

inAL, inCA,
full, ¬nop

inAP, inCA,
¬full, ¬nop

inAP, inCA,
¬full, nop

inAP, atCP,
¬full, ¬nop

inAP, inCA,
full, ¬nop

inAP, atCP,
¬full, nop

inAP, atCP,
full, ¬nop

load

nop

fuel

nop fuel

fly

fly

nop

unload
fuel

unload

unload

Figure 1. Cargo transport from London to Paris. The initial state is
depicted on the upper left hand side, goal states are doubly framed. The

protagonist moves in elliptic, the antagonist in rectangular nodes.

Consider for example a modified version of the Simple Rocket

domain [2] with one airplane/rocket whose tank can be either full or

empty, a set of cities, and a set of cargo packages which can be loaded

and unloaded. Possible actions are flying from one city to another

one if the tank is full, loading a package into the plane, unloading a

package from the plane unless the same package has just been loaded

without an intermittent flying action, fueling the plane if necessary,

and performing no-ops. Flying and loading can only be done by the

protagonist, fueling only by the antagonist, and unloading and no-

ops by both, with the antagonist being barred from two consecutive

no-ops without a flight in between. The goal of the protagonist is

to transport the packages to specified target cities. The agents take

turns, starting with the protagonist.

Assume two cities Paris and London, one package to be trans-



Breadth-First Search AO* with FF heuristic AO* with adversarial FF heuristic MBP
cities pack’s time mem nodes time mem nodes time mem nodes time BDD nodes

2 1 0.014 1 44 0.025 1 37 0.026 1 37 0.000 6601
2 2 0.048 2 152 0.071 1 88 0.072 1 78 0.016 84424
3 3 0.354 6 2106 0.202 6 625 0.260 7 628 0.380 23068
3 4 0.870 49 8211 0.463 28 1871 0.232 17 605 1.780 165718
3 5 5.556 159 43785 1.437 98 6917 0.321 23 794 9.041 365272
3 6 87.691 987 237264 16.323 397 63498 1.157 25 4164 44.287 546666
4 6 — 3098 722750 76.718 698 169349 82.701 642 194304 130.064 834704
4 7 — 2192 771629 373.553 1840 510738 99.639 1487 225544 — —
4 8 — 3889 912816 — 3356 738520 — 5440 914602 — —

Figure 2. Experimental results for the transportation benchmark problems. We used a Java implementation, running on a machine with two Quad Xeon
processors, 2.66 GHz, and a memory limitation of 16 GB RAM. The time-out, indicated by dashes, was set to ten minutes. Times are given in seconds, memory

usage in MB. Memory usage and node counts in case of time-outs are the current values when the time-out occurred.

ported from London (atCL) to Paris (atCP), and the plane initially

in London (inAL) with its tank empty (¬full). The variable “nop” is

true iff the adversary has already performed a no-op since the last

flight. A winning strategy for the protagonist is depicted in Figure 1.

3 Search Algorithm and Heuristic

As search algorithm, we used AO* [10] with maximization of cost

estimates at AND nodes. The performance of the AO* algorithm

depends on the choice of the evaluation function applied to the

fringe nodes. To compute this function, we used an adaption of the

graphplan-based [2] distance heuristic used in the FF planning sys-

tem [9]. Just like the heuristic of the FF planning system, to which

we will refer as FF heuristic, the adversarial FF heuristic uses re-

laxed operators, which we get by ignoring delete lists. For each agent

ag ∈ {p, a}, let O+
ag be the set of relaxed operators he controls.

Fig. 3 shows the pseudocode of the adversarial FF heuristic. Lines 1

to 3 are equal to the forward step of the FF heuristic, except that

there is not only one set of relaxed operators, but two distinct sets

O+
ag that belong to the two agents ag. Lines 4 to 11 correspond to

the backward step of the FF heuristic. In addition, in line 12, the se-

lected operators are put in two distinct sets SO+
ag , one for each agent.

After these two sets have been completely computed, in line 13 the

value of the adversarial FF heuristic is calculated as follows: Since

both agents move in turn, the number of moves needed to execute the

plan is at most twice the number of operators contained in the larger

one of the sets SO+
ag , which we call SO+

max. First, we calculate how

many operators have to be applied by agent max ∈ {p, a}, which

is r := |SO+
max| − |SO+

max ∩ O+

max|, where O+

max is the set of

relaxed operators agent max ∈ {p, a}\{max} controls. The value

of the heuristic can then be calculated as max{2r, |SO+
p |+ |SO+

a |}.

4 Experimental Results

We experimented with solvable problems from the example domain

described above with varying numbers of cities and packages. We

compared running times, memory usage and node creations for unin-

formed breadth-first search, AO* search with the FF heuristic under

the assumption of full cooperation, and AO* search with the adver-

sarial FF heuristic. In addition, we encoded the same tasks as con-

ditional planning problems under full observability in NuPDDL and

solved them using MBP [5]. The results are summarized in Fig. 2.

5 Conclusion

The results in Fig. 2 suggest that in domains where the antagonist

controls operators that may contribute to a plan, AO* search with ad-

versarial FF heuristic often outperforms AO* search with FF heuris-

while G is not contained in the current layer i do1

Let S[i] be the set of all state variables in layer i.2

Let O+[i] be the set of all relaxed operators that are applicable in3

layer i and that belong to agent ag ∈ {p, a}, who is to move in
layer i. Increment i.

Let G[m] be G.4

for layer j := m − 1 to 0 do5

foreach state variable g ∈ G[j + 1] do6

if g ∈ S[j] then7

Put g into G[j].8

else9

Put a relaxed operator o+ into SO+[j] that is in O+[j]10

and that creates g.
Put the precondition pre of o+ into G[j].11

Put all selected operators of SO+[j] into SO+
ag , the set of all12

selected operators of agent ag ∈ {p, a} who is to move in layer j.

If possible, shift operators from SO+
p to SO+

a (or vice versa) to ensure13

that the difference between |SO+
p | and |SO+

a | is as small as possible.
Calculate and return the least number of moves that will be needed to
apply all operators of the two rearranged sets.

Figure 3. Adversarial FF heuristic.

tic and uninformed search. It is competitive with the symbolic ap-

proach used in MBP.

REFERENCES

[1] Pascal Bercher and Robert Mattmüller, ‘A Planning Graph Heuristic
for Forward-Chaining Adversarial Planning’, Technical Report 238,
Albert-Ludwigs-Universität Freiburg, Institut für Informatik, (2008).

[2] Avrim L. Blum and Merrick L. Furst, ‘Fast Planning Through Planning
Graph Analysis’, in Proc. of the Fourteenth International Joint Confer-

ence on Artificial Intelligence (IJCAI’95), pp. 1636–1642, (1995).
[3] Blai Bonet and Héctor Geffner, ‘Planning as Heuristic Search’, Artifi-

cial Intelligence, 129(1-2), 5–33, (2001).
[4] Daniel Bryce, Subbarao Kambhampati, and David E. Smith, ‘Planning

Graph Heuristics for Belief Space Search’, Journal of Artificial Intelli-

gence Research, 26, 35–99, (2006).
[5] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso,

‘Weak, Strong, and Strong Cyclic Planning via Symbolic Model Check-
ing’, Artificial Intelligence, 147(1–2), 35–84, (2003).

[6] Richard E. Fikes and Nils J. Nilsson, ‘STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving’, Artificial Intelli-

gence, 2(3–4), 189–208, (1971).
[7] Michael R. Genesereth, Nathaniel Love, and Barney Pell, ‘General

Game Playing: Overview of the AAAI Competition’, AI Magazine,
26(2), 62–72, (2005).

[8] Eric A. Hansen and Shlomo Zilberstein, ‘Heuristic Search in Cyclic
AND/OR Graphs’, in Proceedings of the Fifteenth National Conference

on Artificial Intelligence (AAAI’98), pp. 412–418, (1998).
[9] Jörg Hoffmann and Bernhard Nebel, ‘The FF Planning System: Fast

Plan Generation Through Heuristic Search’, Journal of Artificial Intel-

ligence Research, 14, 253–302, (2001).
[10] Nils J. Nilsson, Principles of Artificial Intelligence, Springer, 1980.


