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Abstract. Non-determinism arises naturally in many real-world appli-
cations of action planning. Strong plans for this type of problems can
be found using AO* search guided by an appropriate heuristic func-
tion. Most domain-independent heuristics considered in this context so
far are based on the idea of ignoring delete lists and do not properly
take the non-determinism into account. Therefore, we investigate the
applicability of pattern database (PDB) heuristics to non-deterministic
planning. PDB heuristics have emerged as rather informative in a de-
terministic context. Our empirical results suggest that PDB heuristics
can also perform reasonably well in non-deterministic planning. Addi-
tionally, we present a generalization of the pattern additivity criterion
known from classical planning to the non-deterministic setting.
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1 Introduction

Non-deterministic planning problems arise naturally as soon as the agent seek-
ing a goal is confronted with an environment that may have an unpredictable
influence on action outcomes. Specifically, in this work, we are concerned with
finding strong plans [1] for non-deterministic planning tasks in fully observ-
able and static environments. In general, approaches to tackle non-determinism
include planning as model checking [1, 2], QBF-based approaches, and heuristi-
cally guided explicit state techniques [3–6]. Here, we follow the latter approach
and compute strong plans by explicitly constructing the relevant portion of the
AND/OR graph encoding the dynamics of the world, and returning the plan
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corresponding to a solution subgraph. The construction of the graph follows the
AO* algorithm [7] and is guided by a pattern database (PDB) heuristic that
estimates the cost of the solution subgraph rooted at a given node [8]. Given
an informative node evaluation function, more promising parts of the graph are
likely to be expanded before the less promising ones, resulting in a relatively low
number of node expansions before a solution has been found.

As has been shown in earlier work [3–5], using the AO* algorithm in con-
junction with an informative heuristic can be an efficient way to find plans of
high quality. Since the evaluation functions employed so far rarely take non-
determinism into account properly, in this work we investigate the use of PDB
heuristics, since the abstractions underlying the PDBs can be built in a way that
preserves the non-determinism of the original problem.

PDB heuristics have been studied before extensively, both for deterministic
and non-deterministic problems, and both with problem-specific patterns and
with problem-independent pattern selection techniques. In this work, we de-
scribe how to use given PDBs in a generic non-deterministic planner. Problem-
independent ways to come up with patterns are left for future work. Our main
practical contribution is the development of a non-deterministic planner for static
and fully-observable problems based on AO* search guided by PDB heuristics
that is domain-independent except for the lack of an automated pattern selection.
On the theoretical side, we present a generalization of the additivity criterion for
sets of patterns known from classical planning [9] to non-deterministic planning.

2 Non-deterministic Planning

We consider non-deterministic planning problems under full observability. In
contrast to classical planning, the actions can have several outcomes, only one
of which takes effect non-deterministically.

Formally, a non-deterministic planning problem P consists of a finite set
Var of state variables, a finite set A of actions, an initial state s0 and a goal
description G ⊆ Var. The set of states S = 2Var is the set of all valuations of
the state variables, and a state s is a goal state iff G ⊆ s. Each action a ∈ A is
a pair consisting of a set of preconditions pre(a) ⊆ Var and a set eff(a) of non-
deterministic effects 〈addi, deli〉, i = 1, . . . , n, each consisting of add and delete
lists addi, deli ⊆ Var. We call the set of all variables mentioned in the add and
delete lists of an action a its effect variables and denote them as effvar(a) :=⋃n

i=1(addi ∪ deli). An action a is applicable in a state s if pre(a) ⊆ s and its
application leads to the successor states app(s, a) := { (s\del)∪add | 〈add, del〉 ∈
eff(a) }.

We want to find a strategy that is guaranteed to transform the initial state
into an arbitrary goal state within a finite number of steps no matter what
the outcomes of the non-deterministic actions are. Such a strategy is a partial
function mapping states to applicable actions. Cimatti et al. [1] call such a
strategy a strong plan. We formalize strong plans by means of solution graphs
as follows. A planning problem P induces an AND/OR graph G = 〈V, C〉, where
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V = S is the set of nodes and C is the set of connectors. For each non-goal node
v ∈ V and a ∈ A with pre(a) ⊆ v, there is a connector c = 〈v, app(v, a)〉 ∈ C. We
call pred(c) := v the predecessor of c and succ(c) := app(v, a) the successors of
c. The AND/OR graph of P is defined as the connected component of G which
contains s0. A solution graph G = 〈V, C〉 is a connected acyclic subgraph of the
AND/OR graph of P which contains s0, where for all v ∈ V , either v is a goal
state or there is exactly one c ∈ C such that pred(c) = v, and where for all c ∈ C,
pred(c) ∈ V and succ(c) ⊆ V .

We use solution graphs to define the cost value of states. Since we prefer
strong plans with a low worst-case number of action applications along the way
to a goal state, we define the cost of a state s ∈ S as cost∗(s) := minG depth(G),
where G ranges over all solution graphs rooted at s.

Example 1. As an example, consider the following problem with variables a, b,
c, d, and e, actions a1, . . . , a9, s0 = {a}, and G = {b, c, d, e}, where a1 =
〈a, b ∧ ¬a | c ∧ ¬a〉, a2 = 〈b, e | d〉, a3 = 〈c, e | d〉, a4 = 〈b ∧ d, c〉, a5 = 〈c ∧ d, b〉,
a6 = 〈b∧e, c〉, a7 = 〈c∧e, b〉, a8 = 〈b∧c∧d, e〉, and a9 = 〈b∧c∧e, d〉. Preconditions
and effects are written in logical notation and different non-deterministic effects
are separated by vertical bars. Fig. 1a shows the AND/OR graph of P. There
exists only one subgraph encoding a strong plan, shown in Fig. 1b.
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(a) The AND/OR graph of P.
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Fig. 1: The AND/OR graph and a solution graph for P.

3 Search Algorithm

We use AO* [7] graph search to traverse the AND/OR graph induced by a
planning problem. AO* starts with the empty graph and successively expands
it until a solution graph has been found or the AND/OR graph of P has been
completely generated. The performance of AO* heavily relies on the quality of
the heuristic function applied to the fringe nodes.
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4 Pattern Database Heuristics

Pattern database heuristics are a special case of abstraction heuristics. The ba-
sic idea is to obtain heuristic values by optimally solving abstractions of the
planning problem and using abstract costs as heuristic values. The abstractions
are precomputed before the actual search is performed. During the search, no
costly calculations are necessary. The heuristic values are merely retrieved from
the pattern database, in which the cost values of the abstract states have been
stored during the preprocessing stage. Each abstraction can be regarded as a
simplification of the planning problem obtained by restraining it to a given pat-
tern, i.e., a subset of the state variables.

Formally, an abstraction Pi of P with respect to a pattern Pi ⊆ Var is
the planning problem with variables Vari = Pi and states Si = 2Var

i

, where
all conditions and effects are restricted to Pi. More precisely, for var ⊆ Var,
let vari := var ∩ Pi. Then Pi contains an action ai for each a ∈ A, where
pre(ai) = pre(a)i, and eff(ai) contains pairs 〈addi, deli〉 of add and delete lists
for all pairs 〈add, del〉 in eff(a). Finally, si

0 = s0 ∩ Pi and Gi = G ∩ Pi. Given a
pattern Pi, we define the heuristic function hi by hi(s) := cost∗i (s) := cost∗i (s

i),
where the abstract costs are defined analogously to the concrete costs of a state,
i.e., as the depth of a depth-minimizing (abstract) solution graph rooted at si.

We calculate the heuristic values in a preprocessing step by complete exhaus-
tive search. Since the size of the abstract state space grows exponentially in the
size of the pattern, reasonable patterns should not be too large.

Given a pattern collection P consisting of patterns Pi, i = 1, . . . , k, such that
each hi is admissible, i.e., never overestimates the true cost of a state, we can
define the heuristic function hP (s) := maxPi∈P hi(s) without violating admis-
sibility. Since we want to maintain as informative heuristic values as possible,
however, maximization is often not sufficient.

We call a pattern collection P consisting of patterns P1, . . . , Pk additive if∑k

i=1 hi(s) ≤ cost∗(s) for all states s ∈ S. Given a set M of additive pattern col-
lections P , we can define the heuristic function hM(s) := maxP∈M

∑
Pi∈P hi(s).

While hM is still admissible, it is in general more informative than any of the
heuristics hP . If admissible heuristics are used in combination with an appropri-
ate search algorithm like LAO* [6], one can guarantee to find an optimal plan
(if one exists). Admissible heuristics using a set M of additive pattern collec-
tions have another benefit: If the choice of M is sufficiently good, the result-
ing heuristic values can be even more appropriate than those of non-admissible
heuristics. In classical planning, Edelkamp [9] provides a general criterion for
testing whether a pattern collection is additive. It is easy to see that the ana-
logous criterion also holds for the non-deterministic setting, and in particular,
that every single hi is admissible.

Theorem 1. A pattern collection P is additive if for all actions a ∈ A and for
all patterns Pi ∈ P , if Pi ∩ effvar(a) 6= ∅, then Pj ∩ effvar(a) = ∅ for all j 6= i.

Proof. The proof is by induction on the true cost cost∗(s) of s. The base case
for cost∗(s) = 0 is trivial (since in this case, all abstractions of s are abstract
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goal states and we only sum up costs of zero for all abstractions). For the in-
ductive case, consider a concrete solution graph G minimizing cost∗(s). Let c be
the root connector of G, a an action inducing c, and s′ a successor of s in G,
s′ ∈ succ(c), along a cost-maximizing path. In the following, for any concrete
state ŝ and pattern Pi, cost∗i (ŝ) denotes the abstract cost of ŝi, i.e., the depth of
a depth-minimizing abstract solution graph rooted at ŝi. Without loss of gener-
ality, assume that there is a pattern, say P1, in P such that P1 ∩ effvar(a) 6= ∅.
Then, by assumption, Pj ∩effvar(a) = ∅ for j = 2, . . . , k. Now let s′′ be a succes-
sor of s, s′′ ∈ succ(c), such that (s′′)1 maximizes the cost∗1 among the abstract
successors of s1. For all patterns Pi other than P1, we have (s′′)i = si. Applying
the induction hypothesis to s′′, we obtain

k∑

i=1

cost∗i (s
′′) ≤ cost∗(s′′) , (1)

whereas by assumption and by the definition of cost∗, we get

cost∗(s′′) + 1 ≤ cost∗(s′) + 1 = cost∗(s) . (2)

On the other hand,

k∑

i=1

cost∗i (s) ≤ cost∗1(s
′′) + 1 +

k∑

i=2

cost∗i (s
′′) =

k∑

i=1

cost∗i (s
′′) + 1 . (3)

Taking all this together, by (3), (1), and (2) we obtain that

k∑

i=1

cost∗i (s) ≤
k∑

i=1

cost∗i (s
′′) + 1 ≤ cost∗(s′′) + 1 ≤ cost∗(s′) + 1 = cost∗(s) .

Since the heuristic values hi(s) are defined as cost∗i (s), this is the same as∑k

i=1 hi(s) ≤ cost∗(s). ⊓⊔

Corollary 1. The heuristic hi is admissible for any pattern Pi. ⊓⊔

Finding an appropriate pattern collection P1, . . . , Pk is in itself a challenging
problem. Different approaches include clustering variables with strong interac-
tion into one pattern, or to perform local search in the space of pattern collections
[10, 11], starting from singleton patterns for all goal variables and extending the
collection until an evaluation function estimating the number of node expansions
in a search using the current pattern collection reaches a local optimum. In the
following, however, we will focus on how to use a given pattern collection during
search, not on how to obtain it in the first place.

Example 2. Consider the problem from Example 1 and its two abstractions P1

and P2 with respect to the patterns P1 = {a, b, c} and P2 = {d, e}. Then
s1
0 = {a}, s2

0 = ∅, G1 = {b, c}, G2 = {d, e}, and the abstract actions are
a1
1 = 〈a, b ∧ ¬a | c ∧ ¬a〉, a1

2 = 〈b,⊤〉, a1
3 = 〈c,⊤〉, a1

4 = 〈b, c〉, a1
5 = 〈c, b〉,
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a1
6 = 〈b, c〉, a1

7 = 〈c, b〉, a1
8 = 〈b ∧ c,⊤〉, and a1

9 = 〈b ∧ c,⊤〉 for pattern P1, and
a2
1 = 〈⊤,⊤〉, a2

2 = 〈⊤, e | d〉, a2
3 = 〈⊤, e | d〉, a2

4 = 〈d,⊤〉, a2
5 = 〈d,⊤〉, a2

6 = 〈e,⊤〉,
a2
7 = 〈e,⊤〉, a2

8 = 〈d, e〉, and a2
9 = 〈e, d〉 for pattern P2, respectively.

The two graphs to the right show the optimal
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solution graphs for both abstract problems (left:
P1, right: P2). We get a more accurate heuristic
value by summing over all patterns, since the
pattern collection {P1, P2} is additive. E.g.,

h({a}) = cost∗1({a}
1) + cost∗2({a}

2)

= cost∗1({a}) + cost∗2(∅)

= 2 + 2 = 4 = cost∗({a}).

Hence, in this case, the heuristic even computes
the true cost value.

5 Experimental Results

We have encoded several instances of non-deterministic planning problems and
solved them with our AO*-based planner and two different heuristics (FF heuris-
tic [12, 5] and PDB heuristics), as well as with Gamer [2], the winner of the fully
observable non-deterministic (FOND) track of the uncertainty part of the Inter-
national Planning Competition 2008 (IPPC’08). For the comparison, we did not
use the domains from the IPPC’08, since those problems only allow for strong
cyclic plans which our planner cannot find. The results, which were obtained on
a machine with an AMD Turion 64 X2 processor (1600 MHz per core), and 1500
MB memory, are summarized in Tables 1 and 2.

In the first domain, Chain of Rooms [13], a number of rooms are sequentially
connected by doors. A robot starting in the leftmost room has to visit each
room at least once. It can move between rooms if the connecting door is open.
Before a door can be passed or opened, the robot has to observe whether the
door is open or closed. This observation action is modeled as turning on a light
which changes the state of the door from undefined to either open or closed
non-deterministically.

In the second domain, Coin Flip, there are n coins, which are initially con-
tained in a bag. The coins have to be tossed exactly once each, in an arbitrary
order. Tossing results in the coin showing heads or tails non-deterministically.
After a coin has been tossed, it can be turned from heads to tails or vice versa,
depending on which side is currently up. The goal is to have all coins on the
table showing heads.

For the PDB heuristics and the Chain of Rooms domain, we used one pattern
collection for each instance, where each pattern holds all state variables that
belong to four neighboring rooms (24 Boolean variables). We omitted one room
between each group of four rooms to meet the condition of Theorem 1, thus



Solving Non-deterministic Planning Problems with PDB Heuristics 7

dividing a problem with n rooms into ⌈n/5⌉ subproblems. In the Coin Flip
domain, we represented each of n coins by a corresponding pattern (giving us
n patterns containing 3 Boolean variables each). Since those subproblems are
completely independent, we achieve perfect heuristic values and no unnecessary
nodes are expanded.

Table 1: Experimental results from the Chain of Rooms domain. The numbers given
in the columns pre, search, and sum are preprocessing, search, and overall times in
seconds, mem denotes RAM in MB (for PDB plus concrete search space), |PDB| the
overall number of PDB entries, nodes the number of generated nodes in the AND/OR
graph, and |BDD| is the number of BDD nodes. Dashes indicate that the time-out of
30 minutes or the memory bound of 1500 MB was exceeded.

#rooms
AO* Planner, FF AO* Planner, PDB Gamer
search mem nodes pre search sum mem |PDB| nodes search |BDD|

20 2 3 236 4 1 5 3 315 274 6 16699
40 15 13 873 7 2 9 17 679 1138 23 130657
60 69 33 1909 16 6 22 46 1043 2602 — —
80 250 69 3346 26 15 41 100 1407 4666 — —
100 655 133 5183 41 33 74 190 1771 7330 — —
120 1497 214 7419 61 73 134 319 2135 10594 — —
140 — — — 91 117 208 495 2499 14458 — —
160 — — — 127 194 321 736 2863 18922 — —
180 — — — 177 314 491 1050 3227 23986 — —

Table 2: Experimental results from the Coin Flip domain.

#coins
AO* Planner, FF AO* Planner, PDB Gamer
search mem nodes pre search sum mem |PDB| nodes search |BDD|

20 — — — 2 1 3 4 60 1125 — —
40 — — — 3 4 7 27 120 4645 — —
60 — — — 4 19 23 85 180 10565 — —
80 — — — 7 60 67 180 240 18885 — —
100 — — — 11 217 328 366 300 29605 — —
120 — — — 18 306 324 597 360 42725 — —
140 — — — 23 533 556 905 420 58245 — —
160 — — — 34 908 942 1307 480 76165 — —

It is worth mentioning that Gamer will always find optimal solutions, whereas
our AO*-based planner in general only finds suboptimal solutions.

6 Conclusion and Future Work

We have presented and evaluated a planner for fully-observable non-deterministic
planning problems based on AO* search guided by PDB heuristics. Addition-
ally, we have shown a generalization of the pattern additivity criterion known
from classical planning, which allows for more informative heuristics while main-
taining admissibility. The experimental results show that PDB heuristics are a
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promising tool to guide heuristic search algorithms for non-deterministic plan-
ning problems.

So far, the patterns are still selected manually. Obviously, a reasonable au-
tomated pattern selection technique is necessary to obtain a truly domain-
independent planner. In classical planning, local search in the space of pattern
collections [10, 11] is often used to automatically select patterns. We believe
that this approach will result in good patterns for the non-deterministic case,
too. Besides pattern selection, future work includes the adaptation of our imple-
mentation to multi-valued state variables and the generalization of the algorithm
from strong planning to strong cyclic planning [1].

Acknowledgments. We want to thank Peter Kissmann for providing us with
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