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Abstract

The stubborn set method is a state-space reduction technique,
originally introduced in model checking and then transfered
to classical planning. It was shown that stubborn sets sig-
nificantly improve the performance of optimal determinis-
tic planners by considering only a subset of applicable op-
erators in a state. Fully observable nondeterministic plan-
ning (FOND) extends the formalism of classical planning by
nondeterministic operators. We show that stubborn sets are
also beneficial for FOND problems. We introduce nondeter-
ministic stubborn sets, stubborn sets which preserve strong
cyclic plans. We follow two approaches: Fast Incremen-
tal Planning with stubborn sets from classical planning and
LAO* search with nondeterministic stubborn sets. Our ex-
periments show that both approaches increase coverage and
decrease node generations when compared to their respective
baselines.

Introduction
Classical planning is the problem of finding a sequence of
actions leading from a specified initial state to some goal
state. Whereas in classical planning outcomes of actions
are uniquely determined, fully observable nondeterminis-
tic planning (FOND) permits actions whose outcomes are
uncertain. Such nondeterministic actions can be used to
model, e.g., the failure of an agent’s action. While this is
often addressed by re-planning, strong cyclic plans—trial-
and-error strategies—empower the agent to solve failure sit-
uations without re-planning.

Recently, research in classical planning has shifted to-
wards techniques orthogonal to heuristics such as partial
order reduction which has been transfered from computer
aided verification (Valmari 1989; Godefroid 1995) to op-
timal deterministic planning (Alkhazraji et al. 2012). Fur-
ther research aimed at improving the efficiency of stubborn
set computation and determining a generalized definition of
stubborn sets (Wehrle and Helmert 2014). We address the
stubborn set method combined with two algorithms, Fast In-
cremental Planning (FIP) and LAO*.

Fast Incremental Planning is an algorithm for strong
cyclic planning which solves FOND problems within mul-
tiple runs of an underlying classical planner (Kuter et al.
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2008). Planner for Relevant Policies (PRP) combines this
idea with a regression search to generalize the policy and
substantially outperforms FIP (Muise, McIlraith, and Beck
2012). Our first step towards estimating the potential of
stubborn sets for FOND planning is to use FIP with an un-
derlying classical planner in combination with stubborn sets
from classical planning. However, the main drawback of
such determinization approaches is that they may find poor
solutions, e.g., strong cyclic plans with high expected costs.

LAO* (Hansen and Zilberstein 2001), originally proposed
to solve MDPs, is an algorithm for strong cyclic planning,
which finds strong cyclic solutions in the nondeterministic
state space. Using an admissible heuristic estimator, it finds
strong cyclic plans of minimal expected costs. It has been
shown that combining LAO* with pattern database heuris-
tics (Mattmüller et al. 2010) is a successful approach to solv-
ing FOND problems. Our contribution is a stubborn set
formalism for nondeterministic state spaces, that preserves
strong cyclic plans. We evaluated both approaches, FIP
with stubborn sets from classical planning and LAO* with
our new formalism. Our results show that both approaches
increase coverage and reduce node generations when com-
pared to their respective baselines without stubborn sets.

Preliminaries
We use an SAS+ based notation (Bäckström and Nebel
1993) to model fully observable nondeterministic planning
problems. States of the world are described by a finite set
of state variables V . Every variable v ∈ V has an associated
finite domain Dv and an extended domain D+

v = Dv ] {⊥}
where ⊥ defines the undefined value. A partial state is a
function s with s(v) ∈ D+

v for all v ∈ V . We write vars(s)
for the set of all v with s(v) 6= ⊥. A partial state is a state if
vars(s) = V .

Definition 1 (nondeterministic planning task). A nondeter-
ministic planning task is a 4-tuple Π = 〈V,O, s0, s∗〉, where
V is a finite set of finite-domain variables, O is a finite set
of nondeterministic operators, s0 is a state called the initial
state and s∗ is a partial state called the goal. Each nonde-
terministic operator o = 〈Pre | Eff 〉 has a partial state Pre
called precondition, a finite set of partial states Eff and an
associated non-negative number cost(o) called its cost.

An operator o is applicable in a state s if Pre is sat-



isfied in s. The application of a single effect eff ∈ Eff
in s yields the state app(eff , s) that results from up-
dating the values of s with the ones of eff . The
application of o to a state s yields the set of states
o(s) := {app(eff , s) | eff ∈ Eff }. The set of applicable
operators in a state s is denoted by app(s). Sometimes
we want to refer to a particular outcome of an operator
o = 〈Pre | {eff1 , · · · , effk}〉. The determinization of non-
deterministic operator o is o[1], · · · , o[k] with every outcome
o[i] = 〈Pre | {effi}〉. The all-outcomes determinization of
planning task Π = 〈V,O, s0, s∗〉 is Πdet = 〈V,Odet, s0, s∗〉
where Odet is the set of all operator outcomes of O.

An operator is deterministic if |Eff | = 1 . It is nonde-
terministic if |Eff | ≥ 2 . We say a planning task Π =
〈V,O, s0, s∗〉 is deterministic if all of its operators are deter-
ministic. We refer to all variables in the precondition of an
operator o as prevars(o) = vars(Pre) and to all variables
in its effects as effvars =

⋃
i vars(effi).

A solution to a FOND planning task Π with set of states
S is a policy π : S → O ∪ {⊥}, which maps a state to an
appropriate action or is undefined, e.g. π(s) = ⊥. Policy π
is weak if it defines at least one path from the initial state to a
goal state following it. It is closed if following it either leads
to a goal state or to a state where the policy is defined. Policy
π is proper if from every state visited following it there exits
a path to a goal state following it. Policy π is acyclic if it
does not revisit already visited states.

Definition 2 (weak plan, strong cyclic plan, strong plan).
Let Π = 〈V,O, s0, s∗〉 be a planning task.

• A policy for Π is called a weak plan for Π if it is weak.
• A policy for Π is called a strong cyclic plan for Π if it is

closed and proper.
• A policy for Π is called a strong plan for Π if it is closed

proper and acyclic.

A weak plan is a sequence of actions which leads to the
goal if all nondeterministic operator outcomes were deter-
ministic. It corresponds to a plan in classical planning. A
strong plan guarantees that after a maximum number of steps
a goal state is reached. Strong cyclic planning relaxes that
property requiring that the goal is reached within a finite se-
quence of actions. We want to emphasize that the nondeter-
minism in FOND planning is not necessarily the same as in
model checking with nondeterministic models since unlike
strong cyclic plans, counterexamples in model checking are
linear sequences.

Deterministic Stubborn Sets
The first step towards stubborn sets is the definition of op-
erator interference. We follow the definition of Wehrle and
Helmert (2014).

Definition 3 (interference of deterministic operators). Let
o1 and o2 be operators of a deterministic planning task Π
and let s be a state of Π. Operators o1 and o2 interfere in s
if they are both applicable in s, and

• o1 disables o2 in s, i.e., o2 /∈ app(o1(s)), or
• o2 disables o1 in s, i.e., o1 /∈ app(o2(s)), or
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Figure 1: Solid: expensive strong cyclic solution. Dotted:
cheap strong cyclic solution. Determinization-based algo-
rithms might not find the cheap solution.

• o1 and o2 conflict in s, i.e., s12 = o1(o2(s)) and s21 =
o2(o1(s)) are both defined and differ: s12 6= s21.
We approximate deterministic operator interference, by

considering it globally for any state s. According to this syn-
tactic notion of interference, two deterministic operators o1
and o2 interfere if the effect of o1 violates the precondition
of o2 (or vice versa) or if o1 and o2 have a common variable
in their effects which they set to different values. Further-
more, we consider that operators which are never jointly ap-
plicable cannot interfere. This is done by checking whether
the preconditions of two operators o1 and o2 are mutually
exclusive (Wehrle and Helmert 2014). For stubborn sets we
need two more definitions. A disjunctive action landmark
(DAL) in state s is a set of operators such that all opera-
tor sequences leading from s to a goal state contain some
operator in the set. A necessary enabling set (NES) for op-
erator o in state s is a set of operators such that all operator
sequences that lead from s to some goal state and include o
contain some operator in the NES before the first occurrence
of o. Both sets can be computed by selecting a variable v
whose value differs from either the goal or the precondition
of the operator to enable. Then, we add each operator which
achieves the desired value of v. As both sets are not uniquely
determined, the pruning power and size of stubborn sets de-
pends on their choices (Wehrle and Helmert 2014).
Definition 4 (deterministic strong stubborn set). Let Π =
〈V,O, s0, s∗〉 be a deterministic planning task and s a state.
A set Ts ⊆ O is a deterministic strong stubborn set (DSSS)
in s if the following conditions hold:

1. Ts contains a disjunctive action landmark in s.
2. For all operators o ∈ Ts with o /∈ app(s), Ts contains a

necessary enabling set for o in s.
3. For all operators o ∈ Ts with o ∈ app(s), Ts contains all

operators that interfere with o in s.
We use FIP combined with an underlying classical plan-

ner using deterministic stubborn sets. Solving FOND prob-
lems with classical planners can lead to costly strong cyclic
plans. Although optimality does not play the major role in
FOND planning, the possibility of finding arbitrarily bad so-
lutions is undesirable. We show that exactly this might hap-
pen.
Example 1. Consider a nondeterministic planning task Π =
〈V,O, s0, s∗〉with variables V = {v1, v2} and the following



operators:
• o1 = 〈v1 = 0 | {v1 := 1}, {v2 := 2}〉
• o2 = 〈v1 = 1, v2 = 0 | {>}, {v1 := 0, v2 := 2}〉
• o3 = 〈v1 = 0 | {v2 := 2}, {v2 := 1}〉
• o4 = 〈v1 = 0, v2 = 1 | {>}, {v2 := 2}〉
As cost function we have cost : {o1 7→ 1, o2 7→ 1000, o3 7→
2, o4 7→ 1}, the initial state is s0 = {v1 7→ 0, v2 7→ 0} and
the goal s∗ = {v2 7→ 2}. Assume we perform a run of the
FIP algorithm and its first weak plan would be o[2]1 induc-
ing the fail-state o[1]1 (s0) = 10. In a subsequent weak plan
search, the algorithm considers both outcomes of o2 and
adds them to the policy. This yields a clearly non-optimal
strong cyclic plan, whereas the optimal solution consists of
o3 and o4 (Figure 1). Applying PRP to this example gives
the same solution, since regressing o[2]1 is ineffective.

Nondeterministic Stubborn Sets
Reducing FOND problems to multiple classical planning
problems sometimes leads to poor strong cyclic solutions
since the individual runs of classical planners only guarantee
good weak plans which are not always part of a good strong
cyclic plans. To overcome this, it can be beneficial to plan
in the nondeterministic state space e.g., with LAO* search
(Hansen and Zilberstein 2001) which finds strong cyclic
plans with minimum expected costs under certain assump-
tions. Planning in the nondeterministic state space needs
new definitions of stubborn sets and operator interference
since the former do not consider nondeterministic operators.

For a given nondeterministic planning problem Π, a
straightforward approach would be to directly apply the
original definition of strong stubborn sets on the all-
outcome-determinization of Π, and additionally, to add for
every outcome o[i] of a nondeterministic operator o every
other outcome of o in order to respect o’s nondeterministic
nature. However, as the following example shows, such an
approach is incomplete.
Example 2. Consider the following all-outcomes deter-
minization Πdet = 〈V,Odet, s0, s∗〉 of nondeterministic
planning task Π with variables V = {v1, v2} and the fol-
lowing operators:

• o[1]1 = 〈v1 = 0 | {v1 := 1}〉, o[2]1 = 〈v1 = 0 | {v1 := 2}〉
• o[1]2 = 〈v2 = 0 | {v2 := 1}〉, o[2]2 = 〈v2 = 0 | {v2 := 2}〉
• o[1]3 = 〈v2 = 0 | {v2 := 3}〉, o[2]3 = 〈v2 = 0 | {v2 := 4}〉
• o11 = 〈v1 = 1, v2 = 1 | {v2 := 5}〉
• o12 = 〈v1 = 1, v2 = 2 | {v2 := 5}〉
• o23 = 〈v1 = 2, v2 = 3 | {v2 := 5}〉
• o24 = 〈v1 = 2, v2 = 4 | {v2 := 5}〉
The initial state is s0 = {v1 7→ 0, v2 7→ 0}, and the goal is
s∗ = {v2 7→ 5}. The set {o11, o12, o23, o24} is a disjunc-
tive action landmark in s0 which we add to the candidate set
Ts0 . As all operators in this set are inapplicable in s0, we
have to add a necessary enabling set for all of them. A valid
choice for these necessary enabling sets is based on select-
ing the unsatisfied conditions v2 = 1, v2 = 2, v2 = 3 and
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Figure 2: Postponing o1 in s0 only leads to policies with
dead-ends. The straightforward instantiation is incomplete.

v2 = 4 in the preconditions of o11, o12, o23, o24, respec-
tively, and to add the determinized operators that set these
conditions to true. These achieving operators correspond to
all outcomes of o2 and o3, which are applicable in s0 but
non-interfering with any operator not in Ts0 . Hence, we fi-
nally get Ts0 = {o11, o12, o23, o24, o[1]2 , o

[2]
2 , o

[1]
3 , o

[2]
3 }.

However, Ts0 is insufficient for our purpose because every
strong plan from s0 has to start with o1: Depending on the
nondeterministic outcome of o1 (v1 = 1 or v1 = 2), o2 or
o3 can be applied to satisfy the precondition of an operator
to reach the goal. In contrast, starting with o2 and apply-
ing o1 afterwards might lead to outcomes where no goal is
reachable any more (e.g., v1 = 2 and v2 = 2). The analo-
gous situation occurs when starting with o3 and applying o1
afterwards (Figure 2).

The core problem of our straightforward instantiation is
that deterministic operator interference is an insufficient cri-
terion for nondeterministic operators. Because changing the
order of two non-interfering nondeterministic operators o
and o′ in a strong cyclic plan results in, e.g., outcomes of
o′ getting prefixes of weak plans started by o. While this is
not an issue for all weak plans which contain outcomes of
both operators, it is problematic to those weak plans which
start with an outcome of o but do not contain an outcome of
o′. A solution to this is to demand that such prefixes preserve
the original weak plan which we address with the following
property.
Definition 5 (prefix-compatibility). Let Π be a planning
task and Πdet = 〈V,Odet, s0, s∗〉 its all-outcomes deter-
minization. Two operators o1, o2 ∈ Odet are prefix compat-
ible if for all operator sequences π1 and π2:
• o1π1 is a weak plan implies o2o1π1 is also a weak plan

and
• o2π2 is a weak plan implies o1o2π2 is also a weak plan

Intuitively, two operators o1 and o2 are prefix compatible
if every weak plan starting with o1 is preserved if we put o2
to its front and vice versa. Equipped with prefix compatibil-
ity, we can formulate the definition of a stubborn set for the
nondeterministic state space which has two additional rules
compared to the DSSS definition.
Definition 6 (nondeterministic strong stubborn set). Let
Π = 〈V,O, s0, s∗〉 be a nondeterministic planning task,



Πdet = 〈V,Odet, s0, s∗〉 its all-outcomes determinization
and s a state. A set Ts ⊆ Odet, is a nondeterministic strong
stubborn set (NSSS) in s if the following conditions hold:

1. Ts contains a disjunctive action landmark in s for Πdet.
2. For all operators o ∈ Ts with o /∈ app(s), Ts contains a

necessary enabling set for o in s for Πdet.
3. For all operators o ∈ Ts with o ∈ app(s), Ts contains all

operators that interfere with o in s for Πdet.
4. For every outcome o[i] ∈ Ts of nondeterministic operator
o, Ts contains all operators that are not prefix compatible
with o.

5. For every outcome o[i] ∈ Ts of nondeterministic operator
o, Ts contains all other outcomes of o.

Proposition 1. Nondeterministic strong stubborn sets pre-
serve completeness for strong cyclic planning.

Proof. At first we show completeness for strong planning
then we show it for strong cyclic planning. Let π be a strong
plan from state s that induces weak plans πi and πj , such
that there is state s̃ with πi(s̃) = o[i] and πj(s̃) = o[j]. Weak
plans πi and πj have the following structure: πi = αo[i]βi
and πj = αo[j]βj where α is a common operator sequence
without outcomes of nondeterministic operators, and βi,
βj contain also outcomes of nondeterministic operators
respectively. State s̃ is the branching point of πi and πj .
Let ki be the smallest index such that operator oki

∈ πi
is contained in the nondeterministic stubborn set Ts, simi-
larly for kj and πj . We distinguish the following three cases.

(1) oki
∈ α = o1 · · · on. Clearly oki

= okj
. oki

is
applicable since otherwise a necessary enabling set has to
be contained in Ts and at least one operator has to be applied
before oki , contradicting the choice of ki. Since ki is the
smallest index such that oki ∈ Ts, oki does not interfere
with any operator of smaller index because otherwise an
operator applied before oki

must be contained in Ts. Also,
this contradicts the choice of ki. Thus we can replace α by
oki
o1 · · · oki−1oki+1 · · · on.

(2) oki
= o[i]. okj

/∈ α since otherwise oki
∈ α.

Also, okj
cannot be in βj because by the definition of the

NSSS o[j] ∈ Ts. It follows that okj
= o[j]. Like in case (1)

oki
is applicable and does not interfere with operators of

smaller index for πi, the same holds for okj
and πj . Thus

we can move the nondeterministic operator o to the front
resulting in o[i]αβi and o[j]αβj .

(3) oki ∈ βi = on+2 · · · on+mi . okj cannot be in α

since otherwise oki
∈ α. Also, okj

6= o[j] since otherwise
by definition of the NSSS, o[i] would be included in Ts,
contradicting the choice of oki

. Therefore okj
∈ βj . Let

s1 · · · sn−1s̃sn+1 · · · sn+mi
be the states visited by πi. We

know as in case (1) that oki does not interfere with operators
of smaller index. Inductively it follows that oki is applicable
in s̃. Also we know that oki and o are prefix compatible
since otherwise o ∈ Ts. This means that o[i]on+2 · · · on+mi

is a weak plan from ok(s̃) = ok(on · · · (o1(s0))). From

the non-interference of ok with operators of smaller index
we get ok(on · · · (o1(s0))) = on(on−1 · · · (o1(ok(s0)))).
Hence we can move ok to the front of πi and πj . If ok is
an outcome of a nondeterministic operator o′ then it has a
sibling o′l which is the smallest index of weak plan πl. This
case is covered by case (2) with πl and πi.

Since a strong plan is a strong cyclic plan without cy-
cles we just have to consider the effect of cycles. NSSS is
state dependent but not path dependent, therefore revisiting
some state s does not affect Ts, concluding the proof.

Nondeterministic stubborn sets are in general not optimal-
ity preserving for strong cyclic planning since prefix com-
patibility leads to operators being added in front of other
ones which can lead to solutions with higher expected costs.

Approximating Prefix Compatibility
The exact notion of prefix compatibility is intractable to
compute because we would have to consider all weak plans.
Therefore we outline how to find a sufficient criterion
for prefix-compatibility. We define Dis(o) as the set of
operator-variable pairs (o′, v) ∈ Odet × V such that o dis-
ables o′ on variable v in any state. Further we define Neg(o)
as the set of goal variables with which o conflicts, i.e.,
eff (o)[v ] 6= s∗[v ] for goal-related variables v on which o has
an effect. If Dis(o1 ) = Dis(o2 ) and Neg(o1 ) = Neg(o2 )
then o1 and o2 are prefix compatible. The idea behind this
is: if two operators o1 and o2 disable the same set of opera-
tors on the same variables, then every deterministic operator
sequence starting with o1 remains applicable if we append
o2 to its front. Also weak plans are preserved since o1 and
o2 do not violate different goal variables.

In some cases, we can weaken this syntactic notion of
prefix compatibility. Consider two non-interfering operators
o1 = 〈Pre | {eff ′1}〉 and o2 = 〈Pre | {eff1 , · · · , effn}〉. If
σ = {s 7→ o1, o1(s) 7→ o2} is a subsequence of a strong
cyclic plan from state s then exchanging the order of o1
and o2 gives an equivalent subsequence since they induce
the same set of states, i.e., o1(o

[i]
2 (s))) = o

[i]
2 (o1(s)) for all

i ≤ n. Therefore if two such operators do not interfere,
it suffices to check Dis(o1) ⊆ Dis(o2) and Neg(o1) ⊆
Neg(o2).

Sometimes nondeterministic operators contain only one
nontrivial effect, i.e. an operator o = 〈Pre | {eff1}, {>}〉.
For every weak plan o[1]π from state s, it exists a finite se-
quence σ = o[2] · · · o[2], repeated applications of o’s trivial
effect, such that σo[1]π is also a weak plan from s. Thus, ev-
ery operator being a prefix of o[1]π preserving the weak plan,
does also preserve σo[1]π. Such operators are therefore triv-
ially prefix compatible to any other deterministic operator.

Efficient Computation
As nondeterministic stubborn sets leave open how the dis-
junctive action landmark and the necessary enabling sets
were chosen, the pruning power of stubborn sets depends
highly on these design choices. We outlined how prefix
compatibility can be syntactically addressed. However, for



applicable nondeterministic operators with more than one
nontrivial effect, in the stubborn set we have to add both the
interfering and the non-prefix compatible operators. This
leads to many operators being added to the stubborn set. It
is therefore reasonable to avoid applicable nondeterministic
operators with more than one nontrivial effect from being
added to the stubborn set. Let nontrivial be the set of op-
erators with more than one nontrivial effect. Our intention
is to exclude applicable operators of nontrivial from being
added to the stubborn set. We address this by computing a
weight whenever we have to add a DAL or NES to the stub-
born set. We calculate a weight for each DAL or NES and
chose the DAL or NES with lowest weight according to:

weight(o, s, Ts) =


∞, if o ∈ app(s) ∧ o ∈ nontrivial
K, if o ∈ app(s) ∧ o /∈ nontrivial
1, otherwise

where o is an operator not in stubborn set Ts and K a
nonzero natural number. Our exclude strategy is an exten-
sion of a strategy presented by Laarman et al. (2013) which
penalizes applicable operators not in the current candidate
stubborn set. A coarser strategy towards prefix compatibil-
ity for nontrivial operators is to simply assume that an appli-
cable nontrivial operator is not prefix compatible to all other
operators. On par with the exclude strategy this is feasible
since it avoids the costly computation of the disabling rela-
tion.

A Tighter Envelope
Active operators (Chen and Yao 2009; Wehrle et al. 2013)
approximate the set of operators which can be part of any
weak plan from some state using domain transitions graphs
(DTGs). From a more general point of view, Wehrle et al.
(2013) denote subsets which preserve at least one weak plan
from some state as an envelope. Combining a tight envelope
with stubborn sets may not only exclude operators which are
not in envelopeE from the stubborn set but also prevent cas-
cades from being added to the stubborn set. Of course, the
active operators can also be used for strong cyclic planning
since strong cyclic plans consist of multiple weak plans. We
additionally exploit the structure of strong cyclic plans and
obtain a tighter envelope.

A part-of-a-plan operator o ∈ O in s is a deterministic
operator that is contained in some weak plan starting from s.
This notion is intractable to compute so we have to find a
sufficient criterion for it.
Definition 7 (active operator). Let Π = 〈V,O, s0, s∗〉 be a
deterministic planning task. An active operator o ∈ O in a
state s is an operator that satisfies the following conditions:

1. For every variable v ∈ prevars(o), there is a path in
DTG(v) from s[v] to pre(o)[v], and also from pre(o)[v]
to the goal value s[v] if v is goal-related.

2. For all v ∈ effvars(o) ∩ vars(s∗) there is a path in
DTG(v) from eff1 (o)[v ] to s∗[v ].
Intuitively, the definition states that an operator is active

if it is part of some weak plan from the corresponding ab-
stracted state in every singleton abstraction of Π. Thus, a
part-of-a-plan operator is always active but not vice versa.

A nondeterministic part-of-a-plan operator o ∈ O in s
is an operator that is contained in some strong plan π start-
ing from s. Like for the part-of-a-plan operators this is in-
tractable to compute.

Proposition 2. Let o be an applicable nondeterministic op-
erator and o[i] one of its outcomes. If o[i] is inactive in state
s then o cannot be part of any strong cyclic plan from s.

Proof. We show this by contradiction. If there were a strong
cyclic plan π from s, such that π(s̃) = o for some state s̃
but o[i] is no part-of-a-plan operator in s. Let further σ =
o1 · · · on be a deterministic operator sequence applicable in
s that leads to s̃. Since o[i] is no part-of-a-plan operator in
s, no weak plan from s does contain o[i]. Therefore σo[i]π′
for an arbitrary operator sequence π′ cannot be a weak plan
from s. This implies that π′ is no weak plan from o[i](s̃).
Thus π is not proper since o(s̃) is reachable following π but
there is no goal state reachable from o(s̃). This contradicts
π being a strong plan. It follows that if any outcome of a
nondeterministic operator o is not active in s, then o cannot
be part of a strong cyclic plan from s.

We denote our new envelope by nondeterministic active
envelope. It can be used for both the DSSS and NSSS.

Experimental Evaluation
We focused our experimental evaluation on the following
two configurations:

1. FIP combined with DSSSs

2. LAO* combined with NSSSs

We further investigated the impact of different envelopes:
full, active, nondeterministic active (Table 1 and Table 2).
Also, we varied the approximation of prefix compatibility
for the NSSS approach (Table 3). We differentiate between
the approach which assumes that every nontrivial operator
is not prefix compatible with all other operators (no prefix)
and the approach where prefix compatibility is syntactically
approximated (syntactic). For the DSSS, disjunctive action
landmarks and necessary enabling sets were computed us-
ing the laarman strategy. For the NSSS we used the exclude
strategy. The interference relation for both the DSSSs and
NSSSs is entirely precomputed which is also true for the
achievers, the NSSSs need the additional precomputation of
the disabling relation. For the underlying classical planner
of FIP, we used greedy best first search. As heuristic estima-
tor, we chose the FF heuristic (Hoffmann and Nebel 2001)
for all approaches.

We evaluated both stubborn set approaches on all FOND
domains of the IPC-2008 and variations of these. Further-
more we added two domains from probabilistic planning to
our benchmark set.1 All experiments were conducted on a
server equipped with AMD Opteron 2.3 GHz CPUs. We set

1First-Responders-new consists of larger instances of the First-
Responders domain. Forest-new is taken by Muise, McIlraith, and
Beck (2012). Tidyup is the Mobile Manipulation domain of Hertle
et al. (2014) adapted for FOND planning. Earth-Observation was
introduced by Aldinger and Löhr (2013).



Coverage Node Generations
Domain FIP DSSS DACT NACT FIP DSSS DACT NACT
FR(75) 74 –1 –1 –1 2917345 45.71% 45.71% 45.65%
FR-NEW(91) 75 –1 –1 –1 9849763 65.3% 65.3% 65.29%
FOREST-NEW(90) 16 +4 +4 +4 16463519 10.94% 10.94% 10.94%
FOREST(90) 13 +4 +4 +4 28857372 18.96% 18.96% 18.96%
EARTH(40) 35 –2 –2 –2 5592159 100.0% 100.0% 100.0%
TIDYUP(10) 5 ±0 +5 +5 2307584 99.94% 0.12% 0.1%
TTIREWORLD(40) 3 ±0 ±0 ±0 24805 100.0% 100.0% 100.0%
BW(30) 25 –1 –1 –1 191627 100.0% 100.0% 100.0%
FAULTS(55) 55 ±0 ±0 ±0 160599 100.0% 100.0% 100.0%
Overall 301 +3 +8 +8 66364773 35.13% 31.66% 31.65%

Table 1: Comparison of plain FIP with FIP using DSSS and
different envelopes: full, active (DACT), nondeterministic
active (NACT). Nodes of DACT, NACT in % of plain FIP.

Coverage Node Generations
Domain LAO* NSSS DACT NACT LAO* NSSS DACT NACT
FR(75) 57 +1 +1 +2 323275 85.86% 85.86% 81.51%
FR-NEW(91) 19 –2 –2 –2 455521 100.7% 100.7% 100.77%
FOREST-NEW(90) 3 +3 +2 +3 10989 93.28% 93.28% 93.28%
FOREST(90) 6 +1 +1 +1 17861 100.96% 100.96% 100.96%
EARTH(40) 30 ±0 ±0 ±0 80229 100.0% 100.0% 100.0%
TIDYUP(10) 9 ±0 ±0 ±0 40166 99.95% 72.47% 59.68%
TTIREWORLD(40) 6 ±0 ±0 ±0 27807 100.0% 100.0% 100.0%
BW(30) 21 ±0 ±0 ±0 111845 100.0% 100.0% 100.0%
FAULTS(55) 54 ±0 ±0 ±0 153582 100.0% 100.0% 100.0%
Overall 205 +3 +2 +4 1221275 96.47% 95.57% 94.02%

Table 2: Comparison of plain LAO* with LAO* using NSSS
and different envelopes: full, active (DACT), nondetermin-
istic active (NACT). Nodes of DACT, NACT in % of plain
LAO*.

a time limit of 30 minutes and a memory limit of 4GB for
the Java Runtime Environment. We considered an instance
as solved if the planner finds a solution within its time limit
or proves that none exists.

Results
Our experiments yield the following insights:
• DSSS approach: FIP combined with DSSS significantly

increases coverage and reduces node expansions. This is
particularly pronounced in the domains Forest and Forest-
new. DSSS with active envelope solves five additional
problem instances of the Tidyup domain which has—in
contrast to all other domains—applicable inactive oper-
ators permitting immense pruning (0.1% nodes gener-
ated). In all other domains the effect of active envelope
and also of nondeterministic active envelope is negligi-
ble. In First-Responders and First-Responders-new the
DSSS approach loses one instance because of heuris-
tic tie-breaking. Also, it loses two instances in Earth-

Coverage Node Generations
Domain no prefix syntactic no prefix syntactic
FR(75) 59 –2 264437 96.27%
FR-NEW(91) 17 +1 535598 100.45%
FOREST-NEW(90) 6 +1 21088 56.02%
FOREST(90) 7 –1 18033 72.36%

Table 3: Comparison of no prefix compatibility for nontriv-
ial operators with syntactic approximation. We grouped the
domains where coverage and node generations are equal.
Nodes of syntactic in % of no prefix approach.

Observation and one in Blocksworld. The instances in
Earth-Observation result from the vast number of gener-
ated states. In Blocksworld the DSSS approach fails to
solve the hardest problem solved by the baseline which
solves it close to the time limit (1564s out of 1800s).

• NSSS approach: LAO* search combined with NSSS does
also clearly outperform its baseline in terms of cover-
age and node expansions. But in contrast to the DSSS
approach, node generations are not as drastically re-
duced. Since the LAO* algorithm produces noticeably
more overhead per node than the FIP algorithm, reduc-
ing a single node has greater impact for the LAO* algo-
rithm than for FIP. The coverage increase is most evident
in the domain Forest-new where three additional instances
are solved and First-Responders-new with two addition-
ally solved instances. The loss of two instances in First-
Responders-new is caused by heuristic tie-breaks (100.7%
node expansions). A blind search without stubborn set
does not solve any problem in this domain, whereas in
combination with NSSS, it solves the smallest instance.
Furthermore, active envelope and nondeterministic active
envelope are beneficial in terms of pruning power. We
again see the empirical dominance of nondeterministic
active envelope over active envelope supporting the the-
oretical results.

• Prefix Compatibility: In terms of pruning power, the
approach without prefix compatibility for the nontriv-
ial operators is dominated by the syntactic approxima-
tion of prefix compatibility. Except in the domain First-
Responders-new more nodes are generated because of a
single instance which is caused by heuristic tie-breaking
(100.45% node expansions). The increased pruning
power is reflected in better coverage for First-Responders-
new and Forest-new where two hard additional instances
are solved respectively.

Conclusion
We demonstrated that the stubborn set approach is also ben-
eficial for FOND planning. While this was expectable for
FIP and deterministic strong stubborn sets, we needed a new
formalism for LAO* search, which does not reduce FOND
to classical planning. We provided a novel notion of stub-
born sets and proved that it is completeness preserving.

For the future, we want to focus on how prefix compatibil-
ity can be better approximated and evaluate how the degree
of a nondeterministic operator affects the results of our ap-
proach. As a first step, we noticed that two operators cannot
be prefix compatible if they have mutex preconditions. Also,
it would be interesting to combine PRP with stubborn sets.
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